

Spying with a microphone
CM3202 One Semester Individual Project

Final Report

Mohammed Ahmed – AhmedMA10@cardiff.ac.uk
Supervisor: Kirill Sidorov – SidorovK@cardiff.ac.uk

Moderator: Carolina Fuentes Toro – FuentesToroC@cardiff.ac.uk

Computer Science BSc
School of Computer Science and Informatics, Cardiff University

Spring 2024

II

Abstract

This report explores the advancement and efficacy of acoustic side channel
attacks on keyboards, specifically, recognising keystrokes by leveraging modern
machine learning and audio processing techniques. The system, known as
KRAMS (Keystroke Recognition using Augmented Mel-Spectrograms),
integrates a Convolutional and self-Attention Network, known as a CoAtNet,
with SpecAugment data processing to recognise keystrokes from their acoustic
features, extracted using Mel-Spectrograms. The system operates on the
command line interface, allowing users to train, evaluate, and simulate attacks
efficiently. We present the underlying theories, such as the identification,
isolation, and extraction of keystrokes from recordings, extraction of acoustic
features from those keystrokes, and the generation of Mel-spectrograms. We
also examine the concept of side-channel attacks using acoustic emanations and
deep learning models. The project was developed through a structured pipeline
from data recording and preprocessing to model training and evaluation. Our
results demonstrate that this combination of technologies can detect keystrokes
with remarkable accuracy of 99% when tested on a completely unseen testing
dataset. This emphasises the potential vulnerability of acoustic emanation as a
vector for cyberattacks and highlights the need for awareness and improved
security measures against such vulnerabilities.

Acknowledgements

I would like to thank my supervisor Dr Kirill Sidorov for offering his advice
and feedback during this project.

III

Content

Abstract .. II

Acknowledgements ... II

1 Introduction .. 1

2 Background ... 2
2.1 Theory ... 2

2.1.1 Extracting Features from Keystrokes 2
2.1.2 Side-Channel Attacks using Acoustic Emanations 5
2.1.3 Modularisation .. 6
2.1.4 Deep Learning Models ... 6

2.2 Prior Research .. 8
2.2.1 Keyboard acoustic emanations (Asonov and Agrawal 2004) 8
2.2.2 Keyboard acoustic emanations revisited (Zhuang et al. 2009) .. 8
2.2.3 A Practical Deep Learning-Based Acoustic Side Channel

Attack on Keyboards (Harrison et al. 2023) .. 9
2.2.4 CoAtNet: Marrying Convolution and Attention for All Data

Sizes (Dai et al. 2021) ... 10
2.2.5 SpecAugment: A Simple Data Augmentation Method for

Automatic Speech Recognition (Park et al. 2019) 11

3 Specification .. 13
3.1 Objectives and Scope .. 13
3.2 Constraints .. 13
3.3 Requirements .. 14

3.3.1 Functional Requirements ... 14
3.3.2 Non-Functional Requirements ... 14

4 Design ... 16
4.1 Keystroke Extraction .. 16

IV

4.2 Feature Extraction .. 17
4.2.1 Keystroke Augmentation ... 17
4.2.2 Mel-Spectrogram Generation ... 17
4.2.3 Mel-Spectrogram Augmentation .. 18

4.3 Deep Learning Model .. 18
4.3.1 Training .. 18
4.3.2 Evaluation ... 18

5 Implementation ... 20
5.1 Audio Data Recording .. 20
5.2 Keystroke Extraction – keystroke_extractor.py 20
5.3 Feature Extraction – feature_extractor.py 24
5.4 Training Data Processor – training_data_processor.py . 26
5.5 Custom PyTorch Dataset – RecordingDataset.py 27
5.6 coatnet.py .. 27
5.7 Train CoAtNet model – train_model.py 28

5.7.1 Defining Hyperparameters ... 28
5.7.2 Defining Constants .. 29
5.7.3 Running Loop – run() .. 29
5.7.4 Training Loop – train() .. 32
5.7.5 Validation Loop – validation() .. 33

5.8 Model Evaluator – model_evaluator.py 34
5.9 Main File – KRAMS.py ... 35

6 Results and Evaluation ... 36
6.1 Evaluation Files ... 36

6.1.1 Data Loader – trained_model_data_loader.py 36
6.1.2 Evaluation Metrics – trained_model_evaluation_metrics.py

 37
6.1.3 Model Evaluation Client – trained_model_evaluation.py .. 37

6.2 Model Evaluation Metrics ... 38

V

6.2.1 Performance .. 38
6.2.2 Classification Reports .. 39
6.2.3 Loss... 40
6.2.4 Confusion Matrices .. 42

6.3 Evaluation on Different Keyboard 44
6.3.1 Classification Report ... 45
6.3.2 Confusion Matrix .. 45

6.4 Potential Improvements .. 46
6.4.1 Adjustment of Learning Rate .. 47
6.4.2 Data Examination ... 47
6.4.3 Early Stopping .. 47
6.4.4 On-the-fly Batch Data Augmentation.................................... 47

7 Conclusions ... 48

8 Future Works .. 49

9 Reflection on Learning .. 50

10 Bibliography .. 53

11 Appendices .. 60
11.1 Appendix 1 .. 60
11.2 Appendix 2 .. 64
11.3 Appendix 3 .. 65
11.4 Appendix 4 .. 66
11.5 Appendix 5 .. 68

1

1 Introduction

Cyberattacks represent an ever-present and evolving danger that threatens
every stratum of society, from individual citizens to governmental and
corporate infrastructures (Kamiya et al. 2019). Whilst most adopt basic
precautions to shield themselves from common forms of cybercrime, such as
covering the keypad when entering their PIN at ATMs (Cardaioli et al. 2021),
they may not consider other, less obvious threats they are exposing themselves
to. Notably, acoustic emanations produced when typing passwords on work
laptops, or during online banking sessions can potentially be exploited to
intercept sensitive information. This threat is not new, with successful attacks
being demonstrated as early as 2004 (Asonov and Agrawal 2004) with methods
that have continually improved as time progresses (Zhuang et al. 2009;
Harrison et al. 2023).

As progress is made in this field, it becomes crucial to understand and
educate about these vulnerabilities, which, importantly, is one of the main
methods in mitigating vulnerabilities (Allodi et al. 2018; Baek and Kim 2019).
To aid these efforts, we propose KRAMS: Keystroke Recognition using

Augmented Mel-Spectrograms, a simple-to-use command-line interface

application that allows training, evaluation, and attack all in one button press.
This project aims to leverage the most recent advancements in audio processing
and machine learning, implemented by Harrison et al. (2023). Specifically, we
focus on creating Mel-spectrograms from audio recordings of keystrokes and
training a deep learning hybrid model that incorporates traditional Convolution
with self-Attention mechanisms, known as a CoAtNet (Dai et al. 2021).

2

2 Background

This project is made up of various concepts and inspired by various pieces of
existing literature. This section explores topics such as the nature of keystrokes,
visual representations of acoustic signals, side-channel attacks using acoustic
emanations, modularisation, and the concept of a deep learning model.
Additionally, this section reviews prior research in the field, focussing on
acoustic side-channel attacks on keyboards, and outlines the relevant deep
learning model and data augmentation technique used.

2.1 Theory

The following section explains the theoretical foundations, methodologies used,
and the significance of each approach in understanding and analysing keystroke
dynamics and side-channel attacks.

2.1.1 Extracting Features from Keystrokes

This section focuses on the process of feature extraction from keystrokes, a
critical step in understanding and interpreting the unique characteristics of
keystroke interactions.

Keystroke
Understanding the nature of a keystroke is fundamental to this paper. A
keystroke occurs when two specific events occur. The first event is Key Down,
which is triggered continually for the length a key is physically pressed on the
keyboard. The second event is Key Up, which is triggered when the key
currently pressed is released. Hence, a Keystroke is defined as a “combination of
the corresponding key down and key up events.” (Banerjee et al. 2015)

The two events leading to a keystroke each both produce a distinct peak
when the keystroke is observed in a waveform. This can be seen highlighted in
Figure 1.

3

Visualising a Keystroke
Whilst keystrokes do produce distinct acoustic signatures (Asonov and Agrawal
2004; Roth et al. 2015) that can be visualised by waveforms, this representation
lacks any frequency information, offers limited feature extraction abilities, and
often include a lot of noise, none of which are ideal for data processing and, in
turn, machine learning. Therefore, using spectrograms (time-frequency
representations of sound) of these signals are advantageous, especially when
training a deep learning model. Image representations provide the model more
information that is easier to process, enhancing the model’s ability to detect
patterns and relationships within the data (Ciric et al. 2021). Additionally,
models trained on image representations of acoustic signals are more robust,
given that they generalise better (Perez et al. 2020), and allow for more levels
of data augmentation, including flipping, rotating, scaling, cropping,
translation, masking, and Gaussian noise, which can diversify the training set
and support generalisation (Bahmei et al. 2022). Specifically, for spectrograms,
applying time stretching and time-frequency masking has been shown to
produce state-of-the-art performance during testing (see SpecAugment, Section
2.2.5).

Figure 1: A waveform of a keystroke, clearly showing a “press” and a “release”.

4

Spectrograms and Mel Spectrograms
Spectrograms are a three-dimensional visual representation of audio signals
displaying frequency along the y-axis, time along the x-axis, and spectral
magnitude plotted as intensity of shading (Thomas et al. 1994), as seen in
Figure 2. Spectrograms are a commonly used method of representing acoustic

signals across various applications (Loughlin 2009).
Mel spectrograms are a specialised form of the spectrogram that converts

the frequency scale along the y-axis to the Mel-scale (Kaneko et al. 2022), “a
numerical scale … which is proportional to the perceived magnitude of
subjective pitch” (Stevens et al. 1937), as seen in Figure 3. This means each
step on the scale is judged by listeners to be equal in distance from the next,
despite the actual frequencies being logarithmically spaced. This more closely
matches the human auditory system’s response than regular linear frequency
scales (Pedersen 1965). The result of this is a visual representation that

Figure 2: A spectrogram of a keystroke.

5

concentrates more detail into lower frequencies where human hearing is most
sensitive (Sharan and Moir 2019).

Due to this, Mel-spectrograms represent sound in a visually recognisable
manner (Dennis et al. 2011), which has been shown to encourage deep learning
models to generalise better (Piland et al. 2023). Hence, Mel-spectrograms are to
be used in this implementation.

2.1.2 Side-Channel Attacks using Acoustic Emanations

Side-Channel Attacks (SCAs) are “enabled by leakage of information from a
physical cryptosystem” (Grassi et al. 2017), i.e., they are attacks that utilise
physical artefacts that may be compromised unbeknownst to the user of the
system.

Acoustic emanations are defined as “emanations in the form of free-space
acoustical energy produced by the operation of a purely mechanical or
electromechanical device equipment” (National Security Agency 1982).

Figure 3: A Mel Spectrogram of a keystroke.

6

Acoustic Side-Channel Attacks (ASCAs) are SCAs that make use of
acoustic emanations. These have successfully been implemented in the past, for
example, by Zhuang et al. (2009) (see Section 2.2.1), Cheng et al. (2020), and,
more recently, Harrison et al. (2023) (see Section 2.2.3), who’s research is the
basis for this project.

2.1.3 Modularisation

Modularisation is a practice in which “Each task forms a separate, distinct
program module” (Gouthier and Ponto 1970).

Rather than define modules from a flowchart of the stages a program may
run through, it is better to define modules from a list of design decisions which
are likely to change in their method of execution (Parnas 1972).

2.1.4 Deep Learning Models

Deep learning models are a subset of machine learning that use neural networks
with multiple layers to model complex patterns and relationships in data.
Specifically, these models can automatically learn to represent data through a
hierarchy of concepts or features, making them highly effective for a range of
applications from image recognition to natural language processing.

Neural Networks
Neural networks are the core of a deep learning model. These are made up of
layers of interconnected nodes called neurons. Each node in a network is a
small processing unit that performs simple calculations. The nodes are
connected by edges that represent synapses, and each connection carries a
weight that adjusts as learning progresses. (Kriegeskorte and Golan 2019)

Layers
Neural networks are characterised by their depth, which is defined by the
number of layers they have. The three layers that a neural network can be
constructed of are: the input layer, where the initial data enters the network,

7

with each node in this layer representing a feature of the input data; the
hidden layers, between the input and output layers where most of the
processing is done, a number of these are usually used to enable modelling of
complex data with high levels of abstraction; and the output layer, which
produces the final results of the network such as class label in a classification
task or value in regression. (Ismailov 2014)

Learning Process
Deep learning models learn by adjusting the weights of the connections in the
network through a process known as backpropagation. During training, the
network makes predictions, calculates the error of its predictions, known as
loss, and then uses this error to update the weights to improve prediction
accuracy. This process is repeated over many iterations, known as epochs.
(Lillicrap et al. 2020)

Activation Functions
Activation functions are applied at each node in the neural network to help
introduce non-linear properties to the network, allowing it to learn more
complex patterns. Common examples include sigmoid, ReLU (rectified linear
unit), and tanh. (Guo et al. 2019)

Data-driven Learning
Deep learning models require large amounts of data to learn effectively (Riazi
et al. 2019), automatically extracting features from raw data during training,
unlike traditional machine learning models that often require manual feature
extraction (Cayir et al. 2018).

Applications
Deep learning has a wide range of applications, including image and speech
recognition, natural language processing, autonomous driving, and more. Its
ability to perform feature extraction makes it particularly effective for tasks
involving unstructured data, such as text, images, and audio. (Deng and Yu
2014; Vieira 2017)

8

2.2 Prior Research

Keyboard acoustic emanations as a potential side-channel attack vector has
had a substantial amount of exploration. The seminal work in this field was
carried out by Asonov and Agrawal (2004), revisited and improved by Zhuang
et al. (2009), and, more recently, improved by Harrison et al. (2023), who
implemented SpecAugment data augmentation by Park et al. (2019) and the
CoAtNet model introduced by Dai et al. (2021).

2.2.1 Keyboard acoustic emanations (Asonov and Agrawal 2004)

Asonov and Agrawal (2004) demonstrated the feasibility of exploiting the
sounds generated by a keystroke to determine the characters being typed by
analysing the acoustic signatures of individual keys.

Their method involved first extracting features from signals of keystrokes
from audio recordings, such as the Fast Fourier Transform (FFT) components,
which represent the frequency characteristics, believing each key on the
keyboard produces a unique frequency spectrum due to variations in
mechanical construction and placement of the keys. Next, they used a Gaussian
Mixture Model (GMM) classifier to analyse the extracted features and identify
the corresponding keys. The GMM classifier was trained on a labelled dataset,
and during the testing phase produced results with an accuracy that was
promising, especially given it was among the earliest work in this domain.

However, their method was not without limitations. The accuracy of the
attack was sensitive to the position of the microphone in relation to the
keyboard, as well as background noise and variations in typing style.

2.2.2 Keyboard acoustic emanations revisited (Zhuang et al. 2009)

Following on from this research, Zhuang et al. (2009) further advanced the
study of acoustic emanations from keyboards. Their research revisited the issue
with preprocessing steps to enhance the quality of the sound signals, including
noise reduction and signal segmentation to isolate keystrokes. After this, they

9

extracted features focusing on both temporal and spectral characteristics of the
keystrokes. They made use of Mel-Frequency Cepstral Coefficients (MFCCs),
which are commonly used in speech and audio recognition for their ability to
represent the power spectrum in a compact form using the Mel-scale,
mentioned in Section 2.1.1. After extracting these features, they use Hidden
Markov Models (HMMs) to recover text, a form of unsupervised learning. Once
single keystrokes have been recovered, they use the Aspell spellcheck (Atkinson
2023) to attempt to improve their results, however, find the improvements to
be minimal. Instead, they develop an equation that uses patterns in plaintext
to create a confusion matrix that estimates the probability of each class being
the next character. On top of this, they implement an n-gram language model
that “models word frequency and relationship between adjacent word
probabilistically.” Finally, they experiment with multiple classifiers, including a
neural network using Matlab’s newpnn() function (The Mathworks Inc 2024a),
linear classification using Matlab’s classify() function (The Mathworks Inc
2024b), and Gaussian mixtures. This results in an attack that, with a 10-
minute recording of unlabelled keystrokes typing English text, can recover up
to 96% of the typed characters and, additionally, 90% of 5-character
passwords containing random text in fewer than 20 attempts.

2.2.3 A Practical Deep Learning-Based Acoustic Side Channel
Attack on Keyboards (Harrison et al. 2023)

Building on this research, more recent research by Harrison et al. (2023) has
focused on leveraging deep learning models to improve the efficacy of these
attacks. They begin by recording labelled training data in the form of multiple
individual audio recordings, each containing repeated keystrokes of the same
key. They then isolate and extract individual keystrokes from these recordings
by using a similar method as used in existing literature, described in Section
2.1.1. Features from these keystrokes are extracted in the form of Mel-
spectrograms, also described in Section 2.1.1. On top of this, a data
augmentation method, called SpecAugment (Park et al. 2019) (see Section

10

2.2.5) is applied to artificially increase the amount of data available to the deep
learning model, increasing robustness by encouraging the model to generalise
more. Once the dataset is created, it is split into training, validation, and test
datasets and used to train a CoAtNet (Dai et al. 2021) (see Section 2.2.4), a
hybrid model combining traditional Convolution with self-Attention
mechanisms that has shown superior performance in image classification tasks.
This method allowed Harrison et al. to achieve accuracy of 95%, the highest
seen without the use of a language model. Interestingly, this model was also
shown to work over the video-conferencing software Zoom, achieving an
incredible accuracy of 93%. This research sets the structure of the method used
in this project.

2.2.4 CoAtNet: Marrying Convolution and Attention for All Data
Sizes (Dai et al. 2021)

In computer vision, convolutional neural networks (ConvNets, CNNs) have
long been the model architecture of choice, with AlexNet achieving an accuracy
of 84.7% in the ImageNet LSVRC-2012 challenge, 10.8% better than the
runner up. Self-attention models such as transformers have shown great success
in natural language processing contexts but have not shown as much success in
computer vision. In 2021, Dai et al. proposed the CoAtNet family of hybrid
models with an aim to combine the strengths of ConvNets and transformers.
They did this using two key insights, the first being that depthwise convolution
and self-attention layers can be unified via a relative attention mechanism,
enabling the model to capture both local and global dependencies effectively.
The second, that stacking convolutional and self-attention layers can be
surprisingly effective in achieving better generalisation and capacity, if done
properly. When provided with only ImageNet-1K for training, containing 1,281,167 training images, the model achieved 86.0% top-1 accuracy.
Additionally, when provided with ImageNet-21K, using 10 million training
images, the model achieved 88.56% top-1 accuracy. Furthermore, when

11

provided JFT-3B for training, containing 3 billion images, the model achieved
a top-1 accuracy of 90.88%, which established a new state-of-the-art result.

2.2.5 SpecAugment: A Simple Data Augmentation Method for
Automatic Speech Recognition (Park et al. 2019)

Whilst deep learning has successfully been applied to speech recognition,
models tend to overfit easily and require large amounts of training data. Data
augmentation techniques are used to avoid this by increasing the variation of
data in the dataset available to the model. In 2019, Park et al. proposed
SpecAugment, a simple and computationally cheap-to-apply data augmentation
method. There are 3 steps to applying SpecAugment. The first step is time
warping which involves shifting the signal randomly in either direction up to a
set distance parameter, as shown in Figure 5. Given the element of

randomness, this shift simulates slight inconsistencies in recording of data,
increasing variation in input data and, therefore, increasing the robustness of
the trained model by encouraging generalisation. The second step is frequency
masking which involves randomly taking a fixed-sized segment of channels from

Figure 4: Overview of the CoAtNet (Dai et al. 2021)

Figure 5: Visualisation of time warping.

12

the frequency axis and masking them to zero, blocking them off, as shown in
Figure 6. This increases the robustness of the model against changes in spectral
features by encouraging generalisation. The third step is time masking which
involves randomly taking a fixed-sized segment of time steps from the time axis
and masking them to zero, blocking them off, as shown in Figure 6. This

increases the robustness of the model against temporal features by encouraging
generalisation. All three of these steps are also methods of artificially increasing
the amount of data available to the model.

Using this data augmentation method, Park et al. achieved state-of-the-art
performance on the LibriSpeech 960h and Switchboard 300h tasks. They
achieved a 6.8% word error rate (WER) on LibriSpeech’s test-other datatset
without the use of a language model, and achieved a 7.2%/14.6% WER on the
Switchboard/CallHome portion of the Hub5’00 test set without the use of a
language model.

Figure 6: Visualisation of time, frequency, and time-frequency masking.

13

3 Specification

This section outlines the specifications for the project. It defines the objectives,
scope, constraints, and requirements, both functional and non-functional,
necessary to achieve the goals of the project.

3.1 Objectives and Scope

The aim of this project is to develop a keystroke recovery system for recordings
of unknown keystrokes of alphabetic words or sentences based on labelled
training data.

The development of this project requires recording, analysis, processing,
and augmentation of audio data, and implementation, training, and evaluation
of a deep learning model.

These steps can be described as individual modules of a larger working
program which are designed, implemented, and refined independently of each
other, whilst remaining compatible with each other. This is known as
modularisation, mentioned in 2.1.1, and is to be a key concept during the
development of this project.

3.2 Constraints

The project is dependent on having access to a substantial amount of labelled
training data from the keyboard in question, and by limiting the character set
by only allowing alphabetic characters. Training, validation, and test data
should all be collected using a consistent typing force and speed, in a controlled
environmental noise, and with a similar distance between the microphone and
keyboard. The same microphone is to be used in the same room to collect all
three datasets, typed by the same typist. The trained model is not expected to
be compatible with keyboards it has not been trained on, however, it may be
compatible with keyboards of the same model in the same environmental
context.

14

3.3 Requirements

The primary requirement of the project is to develop a system for determining
which keys have been pressed based on the sound they produce. This involves
several layers of functionality to process, analyse, and learn from audio data.

3.3.1 Functional Requirements

Audio Data
F1. The program must be able to load audio files to be used as training

and validation data.
F2. The program must be able to identify keystrokes in an audio file.
F3. The program must be able to extract identified keystrokes in an

audio file.
F4. The program must be able to augment keystroke signals.
F5. The program must be able to generate Mel spectrograms from

keystroke signals.
F6. The program must be able to augment Mel spectrograms.

Deep Learning Model
F7. The program must be able to train a deep learning model using Mel

spectrograms.
F8. The program must be able to save and load trained deep learning

models for future use.
F9. The program must be able to evaluate the deep learning model on

unseen data.

3.3.2 Non-Functional Requirements

NF1. The program must be robust and resilient to handle errors or
interruptions during audio file processing, model training, and
evaluation.

15

NF2. The program must process audio files and perform
identification, extraction, augmentation, and spectrogram
generation operations within a reasonable time frame, even with
large datasets.

NF3. The program must be intuitive to use and user-friendly,
allowing users to easily provide audio files, configure parameters
where necessary, and interpret evaluation results.

NF4. Documentation should be provided where necessary to guide
users through the systems functionalities.

NF5. When evaluated, the program should provide at least 85%
accuracy in a valid test case.

16

4 Design

The implemented system will be a combination of individual modules that will
work together to make up the larger program. The dataset for the project will
comprise of 26 audio files, one for each letter of the alphabet. Only 26 are to
be used to create a minimum viable product, and once feasibility of the selected
method is established, increasing the number of channels to include the
spacebar, punctuation, and digits would be straightforward. Each of those 26
audio files will contain 25 keystrokes of the corresponding key on the keyboard.
Whilst this may seem small, it is important to note that data augmentation is
used to artificially increase the size of the dataset and, therefore, this provides
a sufficient amount of initial data for a deep learning model. Figure 7

demonstrates a simplified version of the data processing pipeline and,
accordingly, the modules for the system are outlined below.

4.1 Keystroke Extraction

This section details the process by which individual keystrokes are identified
and extracted from audio recordings for subsequent feature extraction.

Figure 7: Data Processing Pipeline

17

First, a single audio file is loaded from a specified file path and the audio
signal and sampling rate are returned. The energy of the audio signal is
calculated in overlapping windows, following the method outlined in Section
2.1.1. This involves performing the Fast Fourier Transform (FFT) windowed
segments of the audio signal to get their frequency components. The resulting
coefficients are summed to determine the total energy of the segment, which is
then normalised to allow consistent analysis across different recordings. Using
this normalised energy, prominent peaks that that are likely to correspond to
keystrokes are identified. The boundaries of each keystroke are found using
fixed-size buffers either side of the identified peaks. Segments of the audio
signal that are between these keystroke boundaries are extracted as the signal
for each keystroke.

For each of the previous stages, the option to plot the results on a graph is
given.

4.2 Feature Extraction

Keystrokes are augmented and used to generate Mel-spectrograms, which, in
turn, are augmented. Data augmentation in the form of SpecAugment,
mentioned in Section 2.2.5, is applied to both the keystrokes and Mel-
spectrograms.

4.2.1 Keystroke Augmentation

Keystrokes are augmented by randomly rolling the signal forwards or
backwards by up to 10%, simulating slight variations in keystroke recording
timing, artificially increasing the size of the dataset available to the deep
learning model, and increasing robustness.

4.2.2 Mel-Spectrogram Generation

Mel-spectrograms of the augmented keystrokes are generated.

18

4.2.3 Mel-Spectrogram Augmentation

Mel-spectrograms are augmented by applying time and frequency masks of 10%
at random positions, simulating obscurities in the recordings, artificially
increasing the size of the dataset available to the deep learning model, and
increasing robustness.

4.3 Deep Learning Model

The design of the training and evaluation of the deep learning model is outlined
below, with a detailed implementation found in Section 5.7.

4.3.1 Training

A deep learning model is trained and validated on the augmented labelled Mel-
spectrograms. The model, datasets, and results are stored and saved.

Train: Performs one training epoch using the training dataset, computing

and backpropagating loss for each batch.
Validation: Evaluates the model using the validation dataset to calculate

the average loss and accuracy.
Run: Configures the environment, initialises the model, constant

parameters, and any other required variables and objects, including the
training. validation and test datasets. Runs through the specified number of
epochs, performing training and periodic evaluation, saving the best models.
Stores and saves the final model, datasets, and results.

4.3.2 Evaluation

The deep learning model and test dataset are loaded, and the model is
evaluated.

Load Model and Test Dataset: The trained deep learning model is

loaded along with the test dataset generated during initial training. This allows
for consistent and reproducible splits for training and evaluation.

19

Evaluate Model: The deep learning model is evaluated using the test

dataset, returning the predicted labels.
Calculate Accuracy: The returned predicted labels are compared to the

targets from the dataset and accuracy is calculated. A confusion matrix is
created, and precision and recall are calculated.

20

5 Implementation

As described in the section above, there are multiple stages to completing this
project. This section outlines the detailed process of implementing the system,
covering audio data recording, keystroke extraction, feature extraction, training
data processing, and model evaluation.

5.1 Audio Data Recording

The first step of the implementation was creating a dataset to be used for
training, validation, and testing. Audio was recorded using a Samsung Galaxy
S10+ (Samsung UK 2024) with the Samsung Voice Recorder (Samsung 2024).
Recording quality was set to Medium (128kbps, 44100Hz) and recordings were
monaural. The keyboard recorded was a havit Wired Mechanical Keyboard
(Amazon 2024), with blue switches, which are typically described as tactile and
producing audible feedback. The recording device was set 10cm away from the
keyboard. This resulted in 26 audio-only MPEG-4 files (.m4a) recordings
named A.m4a, B.m4a, C.m4a, …, Z.m4a, each containing 25 keystrokes of the
corresponding key. The files were then converted to wave (.wav) files using
FFmpeg (FFmpeg developers 2024), an open-source suite of libraries for
handling multimedia. This was done to allow simpler compatibility with the
librosa Python library, however, is not necessary if a valid install of FFmpeg is
available for librosa to use.

5.2 Keystroke Extraction – keystroke_extractor.py

To extract the individual keystrokes from each recording, a function was
defined, called load_recording(), to first load a single recording. This
function simply calls the librosa.load() function from the librosa library
(McFee et al. 2023) with the file path of the recording, returning the signal and
its native sampling rate. A function called plot_waveform() was defined to

21

display this signal over time as a waveform, as shown in Figure 8.

As mentioned by Harrison et al. (2023), the majority of recent literature
extract keystrokes using a similar method. This involves performing the Fast
Fourier Transform (FFT) on the audio signal in overlapping windowed
segments and summing the resulting coefficients to compute energy. This is
then normalised and can be plotted on a graph to show the energy of the signal
over time. A threshold is defined, and any peaks exceeding the threshold
indicate the presence of a keystroke in the audio recording.

This method was initially the one chosen for this project, however, others
were experimented with, and a better solution was found. The final method
used was identical to the method mentioned, up until the definition of a
threshold, and thus, a function called process_keystrokes() was defined that
computes the energy of the signal using the scipy.fft() and numpy.sum()
functions and returns it. A function called plot_energy() was defined to
display the energy signal over time onto a graph, as shown in Figure 9.

Next, a function called isolate_keystroke_peaks() was defined that
enters a loop ranging values between 0.01 and 1, incrementing in 0.01 steps.
This value is used as the prominence parameter passed to the
scipy.signal.find_peaks() function, along with the energy signal and a
fixed distance parameter of 100 samples. This causes the function to only
identify peaks with a minimum distance of at least 100 samples from each

Figure 8: A waveform of a recording plotted using plot_waveform().

22

other. The value for this was chosen after running a script called
peak_finder.py which uses np.diff() on an array of peak values that the
user identifies as being correctly annotated, the console log for which can be
found in Appendix 1. The script found the minimum distance between peaks to
be 125 samples, and therefore, an arbitrary 80% of that value, 100 samples,
was chosen as the required minimum distance between peaks for
scipy.signal.find_peaks(). This was found to be extremely effective,
regardless of whether the number of peaks to find is known or not. In this
specific case, the loop breaks once the specified 25 peaks are found. The
function then returns the location of each peak in the signal in samples. A
function called plot_peaks() was defined to plot the identified peaks above
the energy signal over time on a graph, as shown in Figure 10.

The next step was to find the beginning and end of each keystroke in the
audio signal. A function called find_keystroke_boundaries() was defined
that takes the position of the peaks, the signal, and fixed before and after
buffer values that denote the number of samples to include in the keystroke
before and after the peak. The function calculates the boundaries which are
stored as a 2-dimensional array and returned. A function called

Figure 9: Energy of a recording displayed using plot_energy().

23

plot_keystroke_boundaries()was defined to display the “Start” and “End” of
each keystroke, as shown in Figure 11.

The last step is to extract the keystrokes from the audio recording signal

using these keystroke boundaries. A function called isolate_keystrokes()
was defined that takes the keystroke boundaries and the audio recording signal.
The function iterates through the list of start and end boundaries and slices the
audio signal for each pair. The function pads the slice with 0s if the start has
been calculated before the beginning of the recording, or if the end is after the
end of the recording. These keystroke slices are stored in an array and returned

Figure 10: Peaks in energy over time plotted using plot_peaks().

Figure 11: “Start” and “End” of each keystroke shown over the waveform of the
recording using plot_keystroke_boundaries().

24

by the function. A function called plot_extracted_keystrokes() was defined
to plot each of the 25 keystrokes as waveforms over time in a 5�5 grid, as
shown in Figure 12.

5.3 Feature Extraction – feature_extractor.py

Before extracting features from keystrokes, data augmentation in the form of
SpecAugment, mentioned in Section 2.2.5, was applied.

The first step of this involved defining a function, called
signal_data_augmentation(), that takes the extracted keystrokes and
randomly time-shifts them by up to 10% either forwards or backwards. This
simulates slight variations in keystroke recording and isolation timing,
artificially increasing the size of the dataset available to the deep learning
model and increasing robustness by causing the model to generalise more.
These augmented keystrokes, along with the original ones, are stored in an
array and returned by the function. A function called
plot_augmented_keystrokes() was defined that displays the enhanced
keystrokes, as shown in Figure 13.

Figure 12: Extracted keystrokes over time as waveforms displayed using
plot_extracted_keystrokes()

25

Next, Mel-spectrograms of these augmented keystrokes are generated. To

do this, a function called generate_mel_spectrogram() was defined which
takes the keystroke signal, sampling rate, window size, and hop size and calls
the librosa.feature.melspectrogram() function with the n_mels parameter
set to 64, returning a Mel-spectrogram of the keystroke. A function called
display_mel_spectrograms() was defined to visualise these Mel-
spectrograms, as shown in Figure 14.

Figure 13: Augmented keystrokes displayed by plot_augmented_keystrokes()

Figure 14: Mel-spectrograms displayed by display_mel_spectrograms().

26

Once these Mel-spectrograms have been generated, SpecAugment data
augmentation can be applied to them. To do this, a function called
mel_spectrogram_data_augmentation() was created that instantiates two
masks: a time mask using torch.transforms.TimeMasking and a frequency
mask using torch.transforms.FrequencyMasking, which both mask up to 10% of their respective axes in random positions. From this, three new Mel-
spectrograms are created: time-masked, frequency-masked, and time-frequency-
masked. This simulates obscurities in recording such as background noise,
therefore increasing the robustness of the model by causing it to generalise
more, as well as artificially increasing the size of the dataset available to the
model.

5.4 Training Data Processor – training_data_processor.py

To facilitate loading and handling of training data,
training_data_processor.py was created. Its functions are outlined below.

get_file_paths() takes a directory and returns an array of file paths of
audio files to be loaded, i.e., directory\A.wav, directory\B.wav,
directory\C.wav, etc.

data_processing_pipeline() takes one audio recording file path, the
window size and hop size, and before and after buffer values. Using these, it
calls the functions from keystroke_extractor.py and feature_extractor.py
to create fully augmented Mel-spectrograms of the keystrokes in the specified
recording.

unaugmented_data_processing_pipeline() takes one audio recording file
path, the window size and hop size, and before and after buffer values. Using
these, it calls the functions from keystroke_extractor.py and
feature_extractor.py to create Mel-spectrograms of the keystrokes in the
specified recording, without calling the augmentation functions.

process_recordings() takes a list of file paths, the window and hop size,
the before and after buffer values, and a augment flag. Using these, it iterates
through the file paths and, for each one, calls data_processing_pipeline() if

27

the augment flag is True or unaugmented_data_processing_pipeline() if
the flag is False, and appends the resulting Mel-spectrograms to an array, as
well as its file path, a label, and a target integer all to their own arrays.

to_dataframe() takes the resulting arrays from process_recordings()
and converts them to a Pandas (The pandas development team 2024)
dataframe.

to_csv() takes a dataframe and file path and saves the dataframe to the
specified file path.

from_csv() takes the file path of a dataframe, loads it, and returns it.

5.5 Custom PyTorch Dataset – RecordingDataset.py

To aid training the model, a custom PyTorch Dataset was created. The class is
outlined below.

__init__() takes a dataframe created by
training_data_processor.to_dataframe() and the file path the data
originates from. These are stored as properties.

__len__() returns the size of the dataframe provided, i.e., the size of the
dataset.

__getitem__() takes an index and returns the Mel-spectrogram and target
of the entry at that position in the dataframe as tensors.

get_label() takes an index and returns the label of the entry at that
position in the dataframe.

get_label_from_target() takes a target and returns the label of an entry
in the dataframe with a matching target.

5.6 CoAtNet Implementation – coatnet.py

This file contains an implementation of the CoAtNet family of hybrid models
by Wu (2021), as mentioned in Section 2.2.4.

28

5.7 Train CoAtNet model – train_model.py

This stage of the development process involves defining the hyperparameters to
be used, initialising the model and other required objects and variables,
defining the training and validation loops, training the model, and storing the
results.

5.7.1 Defining Hyperparameters

The hyperparameters used to train the model and process the dataset were
based on those from literature by Harrison et al. (2023), with a few exceptions,
namely, the batch size, the time-shift percentage, and the window size. These
are presented in Table 1.

Table 1: Hyperparameters used to train the final model and process the
dataset. Adapted from Harrison et al. (2023).

Parameter Value

Epochs 1100

Epochs per Checkpoint 10
Batch Size 130
Loss Type Cross Entropy
Optimiser Adam
Maximum Learning Rate 5� − 10

Maximum Time-shift Percentage 10%
Mask Percentage 10%

Number of Masks per Axis 2

Mel Bands 64

Window Size 1023

Hop Length 225

Before Buffer 0.3 × 14400 = 4320

After Buffer 0.7 × 14400 = 10080
Dataset Size 5200

Dataset Split Method Random

29

Dataset Split Ratio 8:1:1
Normalised Data Yes

5.7.2 Defining Constants

Once the above hyperparameters have been established, the first step in
developing the training module is to define a subset of the hyperparameters as
constants. This is done as seen below.
WINDOW_SIZE = 1023
HOP_SIZE = 225
BEFORE = int(0.3 * 14400)
AFTER = int(0.7 * 14400)
NUM_EPOCHS = 1100
EPOCHS_PER_CHECKPOINT = 10
BATCH_SIZE = 130
LEARNING_RATE = 0.0005

In addition to this, some file directories are defined at this point.

RECORDINGS_DIR = os.path.join("Recordings")
BASE_DIR = os.path.join("Results",
datetime.now().strftime("%Y%m%d%H%M%S"))
CHECKPOINT_DIR = os.path.join(BASE_DIR, "Checkpoints")
MODEL_DIR = os.path.join(BASE_DIR, "Model")
FIGURE_DIR = os.path.join(BASE_DIR, "Figures")
DATA_DIR = os.path.join(BASE_DIR, "Data")

5.7.3 Running Loop – run()

Inside a function called run(), first, tdp.get_file_paths() is called passing
in RECORDING_DIR as a parameter. The returned file paths are passed into
tdp.process_recordings() along with WINDOW_SIZE, HOP_SIZE, BEFORE, and
AFTER. The resulting arrays are passed into tdp.to_dataframe() which is
returned and stored in the variable df. This is passed into RecordingDataset
to instantiate the dataset, stored in the variable dataset. The dataset is now
split into three distinct sets called train_dataset, validation_dataset, and
testing_dataset using torch.utils.data.random_split() with a ratio of 8: 1: 1, i.e., 80% of the dataset for training, 10% of the dataset for validation,

30

and 10% of the dataset for testing. Given the overall dataset size of 5200, this
results in a training dataset that contains 4160 samples, a validation dataset
that contains 520 samples, and a testing dataset that also contains 520
samples. Stratified sampling, involving randomly selecting a fixed number of
keystrokes from each recording for each dataset, was attempted but found to
be suboptimal, agreeing with the results found by Harrison et al. (2023). The
training and validation datasets are passed into separate
torch.utils.data.DataLoader() objects along with the BATCH_SIZE,
shuffle=True, and drop_last=True. These are named train_loader and
validation_loader and are used to allow batching to occur, i.e., allow
BATCH_SIZE number of samples to be passed to the model at a time. The
shuffle parameter is used to randomise the dataset before samples are selected,
and the drop_last parameter avoids a case in which the last batch is smaller
than the previous group of batches due to the dataset containing a number of
samples that is not evenly divisible by the BATCH_SIZE; i.e., the data loader
drops the last non-full batch on each iteration of the entire batched dataset.
This is to be avoided because smaller batches inherently have a higher level of
variance and can thus cause inconsistencies in the model.

Next, the CoAtNet model is defined. The parameters used to define the
model are based by the CoAtNet variant CoAtNet-4 presented in the paper by
Dai et al. (2021), with [2, 2, 12, 28, 2] blocks and [192, 192, 384, 768,
1536] hidden dimensions (i.e., channels) in the respective stages. However,
CoAtNet-4 could not be used due to its default image resolution of 224�224,
whilst the Mel-spectrograms generated in this project are 64�64. As well as
this, the default number of channels for CoAtNet-4 is 1000, whilst in this case,
we only require 26, one for each letter of the alphabet. Lastly, the default
number of input channels for CoAtNet-4 is 3, whilst we only require 1, given
the monaural audio recordings. Therefore, the model is instantiated directly
using the following parameters and function call:
num_blocks = [2, 2, 12, 28, 2]
channels = [192, 192, 384, 768, 1536]

31

model = CoAtNet(image_size=(64, 64), in_channels=1,
num_blocks=num_blocks, channels=channels, num_classes=26)

Next, the Adam optimiser and Cross Entropy Loss criterion are
instantiated using their default values. These were chosen based on their use in
the paper by Harrison et al. (2023) as well as their use in the original CoAtNet
paper (Dai et al. 2021). A variable called device is created which, if
torch.cuda.is_available() equals True, stores the value "cuda", otherwise,
stores the value "cpu". This is used in multiple instances when moving tensors
to the GPU, if one is available, for hardware accelerated performance. The
model is now moved to device using model.to(device). Empty arrays are
initialised to store training and validation loss values over time, so that they
can later be reviewed and plotted. A best validation loss variable is also
initialised to the value float('inf') which is to be used as a comparison
variable.

At this point, all the initialisation is complete. The function now enters the
training loop, which calls the train() and validation() functions. The
training loop iterates through the values beginning at the number 1 to the
value of the NUM_EPOCHS constant. The loop’s iterable is wrapped with tqdm()
from the tqdm library (da Costa-Luis et al. 2024) to enable progress metrics,
including a progress meter and estimated remaining time. It begins with by
calling the train() function (explained in 5.7.4), passing in the model, device,
train dataset loader, optimiser, criterion, and current epoch number. Returned,
is the loss value of that training epoch, which is appended to the training loss
array created before the loop began. The loop now determines whether the
current epoch is a checkpoint by using the modulo operator to calculate the
remainder when the current epoch number is divided by
EPOCHS_PER_CHECKPOINT. If this equals 0, the current epoch is a checkpoint
and the validation() function (explained in 5.7.5) is called, passing in the
model, device, validation dataset loader, and criterion. Returned, is the loss
value of that validation evaluation, which is appended to the validation loss
array created before the loop began. This loss value is now compared to the

32

best validation loss. If the new loss improves on the best validation loss, the
best value is updated to the current value, and a checkpoint is created. This
checkpoint stores the epoch number, the model’s current state, the optimiser’s
current state, the last training loss, and the validation loss. This is saved to the
CHECKPOINTS_DIR with a filename that includes the epoch number to make it
unique when compared to other checkpoints in that run. The loop has now
completed a single epoch iteration, and repeats NUM_EPOCH times.

When complete, the loop stores the final model state in the MODEL_DIR and
plots the training and validation losses to a graph using Matplotlib, storing
that in the FIGURES_DIR. Finally, the entire dataset is stored in the DATA_DIR,
along with the training, validation, and testing indices, which can be used to
retrieve the distinct datasets used in the current run.

5.7.4 Training Loop – train()

The train() function takes the model, device, training dataset loader,
optimiser, criterion, and current epoch number in as parameters. First, the
model is set to train mode using model.train(), as this can affect parameters
such as batch normalisation and dropout. A float variable to be used to track
the running loss is initialised with a value of 0.0. The batch loop is now
entered, which iterates over the batches provided by the training dataset
loader. Each batch contains a BATCH_SIZE sized array of data and
corresponding target values. These are first moved to the device, and then the
data has an extra dimension added to represent the number of channels, in this
case, one for the monaural audio. Before the model is given data and
backpropagation is started, the gradients are explicitly set to 0 using
optimiser.zero_grad() (PyTorch [no date][a]). This is due to PyTorch’s
default behaviour of accumulating gradients on backward passes, which is
useful when using minibatches, as in this case (PyTorch [no date][b]). Hence, at
the beginning of each training loop, the gradients are set to 0 to ensure correct
tracking. The batch of data is then passed through the model for prediction,
the output of which is returned. This is passed into the criterion along with the

33

batch of targets which computes the loss between them. The gradient of that
loss is then computed using loss.backward() with respect to the model
parameters, and then the model’s parameters are updated based on those
gradients. Finally, the running loss is updated by adding the current loss with
an addition assignment.

At this stage, the training loop is complete. The function calculates the
average loss over all the batches provided by the training dataset loader, and
returns it, completing the function.

5.7.5 Validation Loop – validation()

The validation() function takes the model, device, validation dataset loader,
and criterion in as parameters. First, the model is set to evaluation mode using
model.eval(). A float variable to be used to track the running loss is
initialised with a value of 0.0. In addition to this, an integer to count the
number of correctly predicted samples is initialised with a value of 0, as well as
an array used to store any misclassified examples. The function then enters the
following with statement: with torch.no_grad(). This disables gradient
computation which, for model evaluation, is not necessary and therefore
improves performance and memory usage. Inside this statement, the batch loop
is entered, which iterates over the batches provided by the validation dataset
loader. As in the training loop, each batch contains a BATCH_SIZE sized array
of data and corresponding target values. These are again moved to the device
and data has an extra dimension added. The batch of data is passed through
the model for prediction and the output is returned. This is passed into the
criterion along with the batch of targets, and the loss between them is
computed. The running loss is now updated by adding the current loss with an
addition assignment.

Misclassified samples are now logged. The misclassified samples are first
identified by extracting the predicted class labels from the output logits of the
model, which are then compared to the target labels, returning Boolean values
where each value is True if the prediction matches the target, and False

34

otherwise. The number of True values is summed and added to the variable
counting correctly predicted samples using an addition assignment.

At this point, the validation loop is complete. The function calculates the
average loss over all the batches provided by the validation dataset loader, as
well as the accuracy percentage of samples correctly identified, which is printed
out. The misclassified samples array is then formatted and printed to the
console. Finally, the average loss is returned, completing the function.

5.8 Model Evaluator – model_evaluator.py

To aid in evaluating the model against a recording of unknown keystrokes,
model_evaluator.py was created. Its functions are outlined below.

load_and_prepare_model() takes the path in which the model to be
evaluated is stored, as well as the device to load the model onto in as
parameters. If the model ends with "model.pth", it is assumed to be the final
model and is loaded directly. Otherwise, it is assumed that the path that has
been passed in is the path to a checkpoint, and the model is read from the
checkpoint dictionary stored in that file location. The model is then moved to
the device, set to evaluation mode, and returned.

predict_keystrokes() takes the model, Mel-spectrograms of the unknown
keystrokes from the recording, and the device in as parameters. An empty
array is initialised to store the predicted output labels from the model. The
function enters a with torch.no_grad() statement, disabling gradient
computation which is not necessary for evaluation, improving performance and
memory usage. The function iterates over each Mel-spectrogram that has been
passed in, first moving it to the specified device. The Mel-spectrogram is then
“unsqueezed” twice in order to add two dimensions to it, which represent the
batch size and number of channels respectively, in this case, both 1 given the
single Mel-spectrogram and monaural audio. The Mel-spectrogram is then
passed to the model to predict its label, which returns output logits. The index
of the maximum value in the output along dimension 1, representing the labels
predicted by the model, is extracted. This corresponds to the most likely class

35

label predicted by the model. The extracted index is converted to the character
it represents and is appended to the output labels array. The character is also
printed to the console, allowing real-time observation of predictions as soon as
they are available. Finally, the output labels array is returned by the function.

5.9 Main File – KRAMS.py

To bring the project together, KRAMS.py was created. If the script is run as the
main function, i.e., if __name__ == "__main__", then the argparse library is
imported to handle user arguments. An ArgumentParser object is created with
the name of the project and a description. Arguments are added using the
library’s add_argument() function. Specifically, an argument for the path to
the directory containing the training recordings, an argument for the path to
the recording to attack, and an argument for the number of keystrokes present
in the attack recording. The arguments inputted by the user are then parsed
using the library’s parse_args() function. Assuming the user has entered a
valid set of arguments, training parameters are now defined and passed into the
krams() function. This function starts by importing the necessary libraries. It
then calls train_model.run() with the required training parameters which,
once the model has been trained, returns the base_dir storing the results. The
attack recording is then processed using
tdp.unaugmented_data_processing_pipeline() which is called with all the
necessary arguments, returning the extracted Mel-spectrograms. The trained
model is then loaded using me.load_and_prepare_model() and passed into
me.predict_keystrokes() along with the Mel-spectrograms, which predicts
and prints the keystrokes from the attack recording.

36

6 Results and Evaluation

This section presents the results of the implementation and the evaluation of
the trained models. It describes the evaluation files and their functions,
discusses the performance of the models, and examines the classification
reports, confusion matrices, and potential improvements to the implementation
process.

6.1 Evaluation Files

To aid with evaluation, two module files and a client file were created.

6.1.1 Data Loader – trained_model_data_loader.py

To facilitate with loading the data saved by the run of the implementation,
trained_model_data_loader.py was created. Its functions are outlined below.

get_dataset() takes the DATA_DIR path of the run and loads the file
containing the entire dataset, returning it.

get_train_dataset() takes the DATA_DIR path of the run and loads the
file containing the entire dataset. It then loads the file containing the indices of
the training dataset. Once loaded, it creates a torch.utils.data.Subset
instance of the dataset, containing only the samples present in the training
dataset, which is returned.

get_validation_dataset() takes the DATA_DIR path of the run and loads
the file containing the entire dataset. It then loads the file containing the
indices of the validation dataset. Once loaded, it creates a
torch.utils.data.Subset instance of the dataset, containing only the
samples present in the validation dataset, which is returned.

get_test_dataset() takes the DATA_DIR path of the run and loads the file
containing the entire dataset. It then loads the file containing the indices of the
test dataset. Once loaded, it creates a torch.utils.data.Subset instance of
the dataset, containing only the samples present in the test dataset, which is
returned.

37

6.1.2 Evaluation Metrics – trained_model_evaluation_metrics.py

check_accuracy() takes the target labels and the predicted output labels
in as parameters, both as arrays. These are named target_labels and
output_labels respectively. The function starts by ensuring the length of
target_labels and the length of output_labels match. If so, the function
continues by initialising a counter to keep track of the number of correctly
identified characters. The function then iterates through the target_labels
and compares them to the output_labels. Each time there is a match, the
correctly identified characters counter is incremented. Once the loop is
complete, the function calculates accuracy as a percentage by dividing the
value in the correctly identified characters counter by the length of
target_labels and multiplying the result by 100. Finally, the function prints
the accuracy and returns it.

classification_report() takes the target labels and the predicted output
labels in as parameters, both as arrays. These are used to create a Scikit-learn
classification report (Pedregosa et al. 2011) using
sklearn.metrics.classification_report() which displays precision, recall,
F1-score, and support across each class, and as an average over all the classes.

confusion_matrix() takes the target labels and the predicted output
labels in as parameters, both as arrays, and a title for the confusion matrix.
These are used to create a Scikit-learn confusion matrix using
sklearn.metrics.ConfusionMatrixDisplay.from_predictions().

6.1.3 Model Evaluation Client – trained_model_evaluation.py

To evaluate the best version of the trained model,
trained_model_evaluation.py was created. First, BASE_DIR, DATA_DIR,
MODEL_DIR, and CHECKPOINT_DIR are all defined, leading to the final model’s
base directory and subdirectories. Next, the entire dataset and the test dataset
are loaded using tmdl.get_dataset() and tmdl.get_test_dataset()
respectively. A variable is created which, if torch.cuda.is_available()

38

equals True, stores the value "cuda", otherwise, stores the value "cpu". This,
along with the path to the model or checkpoint to evaluate, is passed into
me.load_and_prepare_model(). The resulting model object is stored. The
Mel-spectrograms are separated into their own array from the test dataset
and passed into me.predict_keystrokes(), along with the model and device.
The output labels are returned and printed. The targets from the test dataset
are converted into labels and separated into their own array, which is printed.
The target labels and output labels arrays are passed into
tmem.check_accuracy() that returns the final accuracy, which is printed. The
target labels and output labels arrays are then passed into
tmem.classification_report() that returns a Scikit-learn classification
report, which is printed. Finally, the target labels and output labels arrays are
passed into tmem.confusion_matrix() that creates and returns a Matplotlib
plot containing a Scikit-learn confusion matrix, which is then displayed.

6.2 Model Evaluation Metrics

The following section focuses on explaining the different metrics used to
evaluate the model, the metrics the model achieved, and what they represent.

6.2.1 Performance

The implementation in Section 5 was run using Google Colab (or simply,
Colab), a hosted Jupyter Notebook service that provides access to computing
resources. Notably, Colab provides access to GPUs, such as Nvidia A100s,
V100s, and T4s. The code was copied into a Colab instance and run on an
Nvidia V100 GPU to strike a balance between performance and cost of
compute units. The computation was carried out successfully, taking 3 hours,
42 minutes, and 30 seconds (3:42:30) to run, according to tqdm, with an
average iteration time of 12.14 seconds. This resulted in a subdirectory in the
"Results/" directory named "20240427130931/". As expected, this contains
the relevant Checkpoints, Data, Figures, and Model subdirectories. The

39

resulting directory was plugged into the evaluation client. Two models were
evaluated: the most recent, and therefore, best validation checkpoint, and the
final model. The best checkpoint was recorded at epoch 130 and, therefore, is
referred to as Checkpoint 130. The dataset used for testing was produced
during training, as detailed in Section 5.7.3. As mentioned, the overall dataset
contained 5200 samples and was split 8: 1: 1 to create the training, validation,
and testing datasets. This resulted in a testing dataset containing 520 labelled
Mel-spectrograms split from the original overall dataset, and has not been seen
by the model during training.

6.2.2 Classification Reports

Table 2 and Table 3 display summaries of the classification reports for
Checkpoint 130 and the final model, respectively. These summaries include the
averaged precision, recall, F1-score, and support metrics. The full classification
reports detailing the metrics for each class can be found in Appendix 2 and
Appendix 3 for Checkpoint 130 and the final model, respectively.

Table 2: Classification Report for Checkpoint 130

 Precision Recall F1-Score Support

Accuracy − − 0.99 520
Macro Average 0.99 0.99 0.99 520
Weighted Average 0.99 0.99 0.99 520

Table 3: Classification Report for the final model

 Precision Recall F1-Score Support

Accuracy − − 0.95 520
Macro Average 0.96 0.95 0.95 520
Weighted Average 0.95 0.95 0.95 520

Precision measures the subset of true positive label predictions among all

positive label predictions made by the model, i.e.,

40

Precision = True PositivesTrue Positives + False Positives
Recall measures the subset of true positive label predictions among all actual
positive instances in the dataset, i.e., Recall = True PositivesTrue Positives + False Negatives
F1-score is the harmonic mean of precision and recall and considers both false
positive and false negatives, making it useful for imbalanced datasets that may
skew precision and recall. F1-score is therefore defined as: Fଵ-score = True PositivesTrue Positives + 12 (False Positives + False Negatives)
Support is simply the number of actual occurrences of each class in the dataset,
i.e., the number of instances in each class. (Acharya 2024).

As shown in Table 2, Checkpoint 130 performed exceptionally well when
evaluating the test dataset, with an average weighted precision, recall, and F1-
score of 0.99. Table 3 shows that the final model also performed exceptionally
well, whilst slightly underperforming when compared to Checkpoint 130, with
an average weighted precision, recall, and F1-score of 0.95. The final model
likely underperforms compared to Checkpoint 130 as it likely started overfitting
at around 800 epochs, when analysing the loss graph (see Figure 15, Section
6.2.3).

6.2.3 Loss

The loss graph, displaying the training and validation loss over time, can be
seen in Figure 15, with Figure 16 scaled to ignore a significant spike in training
loss at around 150 epochs. During this spike, the training loss jumps to around
340, before quickly settling down. This could indicate an inconsistency in the
training dataset, or potentially a misconfiguration of hyperparameters. After
this initial spike, both the training and validation loss both remain relatively
low and stable, with only slight fluctuations, typical as the model adjusts its
weights based on learning. Validation loss closely mirrors the training loss,
suggesting that the model is not overfitting significantly at this point. However,

41

Figure 15: Trained model training and validation loss graph.

Figure 16: Trained model training and validation loss graph with maximum
loss limited to 80.

42

at around 800 epochs, there is noticeable variability in both training and
validation loss, with an increased number of spikes particularly in the
validation loss. This could suggest that the model may be starting to overfit, or
that it is sensitive to specific batches of data. It may also suggest that the
learning rate needs to be adjusted in order to stabilise the loss towards the end
of the training.

6.2.4 Confusion Matrices

Figure 17 and Figure 18 display confusion matrices of Checkpoint 130 and the

Figure 17: Confusion Matrix for Checkpoint 130

43

final model respectively. A confusion matrix is used to evaluate the
performance of a classification model by comparing predicted classifications
against the actual classifications (Ting 2017). That is, the matrix records the
number of times each label on the x-axis was classified by the model as being
the label on the y-axis. Thus, in a perfect scenario, the cells where � = � would
contain the value of the number of instances of each label in the dataset, and
any cells where � ≠ � would contain 0. As can be seen in Figure 17,
Checkpoint 130’s confusion matrix has essentially all 0s in cells where � ≠ �,
with only 4 exceptions. These exceptions are highlighted in Table 4, which

Figure 18: Confusion Matrix for the final model.

44

indicates that out of four misclassifications, one was only one key away from
the correct key, and that two others were only two keys away.
Table 4: Misclassified labels when evaluating test dataset using Checkpoint 130.

True Label Predicted Label Distance Between
Keys

G T 1
X V 2
G D 2
L F 5

The case is similar when looking at Figure 18. The final model’s confusion
matrix has essentially all 0s in cells where � ≠ �, however, there is a higher
number of exceptions to this case, with 26 misclassified labels. Table 5
highlights the four most common misclassifications. The most misclassified key
pairing, C with X, was misclassified 4 times, however, C and X are only one
key away from each other on the keyboard, so this is not an extremely unusual
result. The second most misclassified key pairing, G with W, was misclassified
3 times, and is less explainable. It is likely that the final model struggled with
differentiating these keys due to it overfitting towards the end of training, and
therefore failing to fit unseen data.

Table 5: Four most common misclassifications when evaluating the test dataset
using the final model.

True Label Predicted
Label

Misclassificatio
ns

C X 4
G W 3
Y U 2
P Z 2

6.3 Evaluation on Different Keyboard

Whilst this model was never expected nor intended to be compatible with any
keyboard other than the one used for training, the model was evaluated on an

45

entire dataset of data from a different keyboard. Specifically, the model was
evaluated on a dataset of keystrokes from a Dell Inspiron 7415 2-in-1 (Dell Inc.
2024). This dataset contains 25 keystrokes of each of the 26 alphabetic keys,
resulting in 650 samples. When compared to the mechanical keyboard used to
train the model, this laptop keyboard is much quieter, with keys featuring a
much shorter travel distance. It was expected that the model would simply not
be able to differentiate the keys from each other, and this was the case.

6.3.1 Classification Report

Table 6 displays a summary of the classification report for Checkpoint 130
evaluating the laptop keyboard. As can be seen, the model performed extremely
poorly, achieving an average precision of 0 and accuracy F1-score of 0.04. The
full classification report detailing the metrics for each class can be found in
Appendix 4.

Table 6: Classification Report for Checkpoint 130 evaluating laptop keyboard.

 Precision Recall F1-Score Support

Accuracy − − 0.04 650
Macro Average 0.00 0.04 0.00 650
Weighted Average 0.00 0.04 0.00 650

6.3.2 Confusion Matrix

Figure 19 displays the confusion matrix of Checkpoint 130 evaluating the
laptop keyboard. As mentioned, ideally, all the cells where � ≠ � would contain
0 and all cells where � = � would contain the number of instances of that class
in the dataset, in this case 25. However, as can be seen in Figure 19, that is
not the case. In all cases except 3, the model predicted the label of the sample
provided to be C. It is most likely that the model simply could not distinguish
the keys from each other and the closest key to classify the samples as was C.
This supports the assumption that the keyboard would not work on different
keyboards that it had not been trained on.

46

Figure 19: Confusion Matrix for Checkpoint 130 evaluating the laptop

keyboard.

6.4 Potential Improvements

Whilst the trained models perform extremely well, an even more robust and
effective model could be developed. The adjustments below serve as potential
improvements to the training process of the model.

47

6.4.1 Adjustment of Learning Rate

The initial spike and later fluctuations in loss suggest that the learning rate
may be suboptimal. Implementing a learning rate scheduler that decreases the
learning rate over epochs may help eliminate these inconsistencies and ensure a
smoother convergence, potentially leading to a more refined final model.

6.4.2 Data Examination

Anomalies in training data that coincide with loss spikes could impact the
model’s ability to learn optimally. Examining the batch of data during this
spike could reveal an otherwise hidden anomaly in data. Cleansing this data
could reduce these spikes and therefore the model’s ability to converge.

6.4.3 Early Stopping

Implementing an early stopping mechanism could prevent overfitting and
conserve computational resources, which can be costly, especially for multiple,
long training sessions. For example, the Google Colab V100 GPU instance used
in this case costs approximately 4.85 computational credits per hour, with 100
credits costing £9.72.

6.4.4 On-the-fly Batch Data Augmentation

Currently, the SpecAugment data augmentation technique is applied to the
entire dataset at the beginning of the training process. Whilst this provides a
static augmented dataset, it lacks the variability and randomness that could
potentially lead to a more robust model. This could easily be implemented by
integrating it into the custom RecordingDataset, which contains the function
that provides the training dataset loader each data and target pair. This would
ensure the model does not see the same version of input data twice.

48

7 Conclusions

To summarise, this report has demonstrated the feasibility and effectiveness of
a keystroke recovery system that utilises Mel-spectrograms and deep learning
techniques. The proposed system successfully incorporates modern
advancements in audio processing and machine learning, specifically through
the implementation of a CoAtNet model combined with SpecAugment data
augmentation. The evaluation of the model demonstrated exceptional accuracy,
with Checkpoint 130 achieving an impressive 99% accuracy rate on the 520-
character test dataset, while the final model had a respectable 95% accuracy
rate. These results imply a robust system that is confident in extracting and
identifying keystrokes based on acoustic emanations.

The project’s success helps highlight the potential for acoustic side-channel
attacks to be a real threat to sensitive information, underscoring the
importance of understanding and mitigating such vulnerabilities. The project’s
success also highlights how advancements in machine learning can effectively be
applied to enhance side-channel attack methodologies, thereby raising
awareness of potential cyber threats and the need for improved security
measures.

49

8 Future Works

While the developed solution performed respectfully, several areas for future
improvement and research were identified, as outlined below.

1. The initial spike and later fluctuations in loss suggest that the
learning rate may be suboptimal. This could be improved by

implementing a learning rate scheduler to decrease the learning

rate over epochs to reduce inconsistencies and produce a more refined
final mode.

2. Another level of analysis of the dataset, particularly anomalies that

coincide with loss spikes, could reveal issues affecting the model’s
ability to learn optimally. Addressing this could allow the model to
converge better.

3. Implementing early stopping could prevent overfitting of the final

model and conserve computational resources which would be beneficial
for long training sessions considering the costs associated with cloud-
based GPU instances like Google Colab.

4. Enhancing data augmentation by incorporating an on-the-fly

approach to each batch would add much more variability and
randomness to the training data, potentially leading to a more robust
model that is encouraged to generalise more.

5. Expanding the dataset to include the space bar, numeric, and

special characters would allow the system to be used in a much wider
range of situations and scenarios. This would be simple to implement
by increasing the number of channels in the classifier but was not
achieved due to time constraints.

6. Future work could involve testing the system in more varied real-
world scenarios to assess its robustness against different

environmental noise levels, microphone placements, keyboard types,
and typing styles.

50

9 Reflection on Learning

The development of this project has been an enriching experience, providing
insight into the theoretical, technical, and practical aspects of machine
learning, signal processing, and cybersecurity. I have learnt several key lessons
and valuable skills that will be beneficial for both my personal and professional
development.

Whilst I had a structured plan for completing this report, some stages,
specifically developing code to train the model, took far longer than originally
anticipated, impacting the overall timeline. I had assumed that I was aware of
the amount of time each stage would take, when in reality, this was not the
case. I should have researched the amount of time the more challenging stages
would potentially take me and allocated my time to these stages accordingly. I
had originally dedicated two weeks to developing code to extract keystrokes
and their features, two weeks to developing code to train the model, and
another two weeks to developing code to recover keystrokes from the model.
However, I spent three weeks, four weeks, and one week on these stages
respectfully, meaning I overran and had to restructure the remainder of my
time around the tasks still to complete. This experience has emphasised the
importance of thorough preparation and realistic time management.

Leading on from the point above, whilst I was extremely eager to learn, my
knowledge of machine learning was fairly minimal at the beginning of the
project. I had assumed I would be able to pick up the basics fairly quickly by
simply reviewing other implementations of similar projects, however, due to the
number of elements required to bring a machine learning project together, this
was not the case. Consequentially, I found dedicating focused time to learning
and ensuring I understood the fundamentals was crucial in enhancing my
knowledge and skills in the machine learning field, highlighting the importance
of ongoing education in areas outside of my current knowledge space.

Given that I had prior knowledge of audio processing, I had assumed that
this would be enough to understand and comprehend that portion of the

51

project. However, this project required me to recollect and refresh my
understanding, reinforcing the value of always continuing to build on
foundational knowledge and revisit familiar topics to ensure complete
understanding.

Initially, I had attempted to use my own hardware to develop, train, and
analyse the model. Given that I have a dedicated Nvidia GPU, I had assumed
it would be possible to use CUDA and cuDNN to train the model. However, it
quickly became apparent that this would not be sufficient given the amount of
video memory (VRAM) required to load the complex deep learning model
chosen and all the Mel-spectrograms. I had underestimated the benefits of
using a hosted development service that provides dedicated GPU resources, like
Google Colab on even the free tier. Once I had made the switch, the
performance improvements significantly streamlined the development and
testing processes, allowing me to test many more potential hyperparameters in
a much shorter amount of time. This experience taught me the importance of
leveraging available resources and services to enhance development efficiency,
and to not rule out any options without giving them a fair trial.

Given my reliance of personal hardware mentioned above, each training run
took a considerable amount of time and therefore limited my ability to
experiment with different hyperparameters effectively. Given my method was
based on existing literature, I believed using the hyperparameters mentioned in
the paper would be sufficient for my training set, however, this was not the
case, and a fair amount of experimentation was required to find ideal values. I
believe if I had switched to using Colab sooner, and had more time to
experiment, I could have found even more optimal hyperparameters, potentially
improving the model’s performance.

Continuing this point, I believe the challenges I faced with spikes in the loss
graph were compounded by my initial choice to use personal hardware. More
time and experimentation with hyperparameters may have improved this.

Despite these issues, the project was ultimately successful and achieved an
extremely respectable accuracy. This demonstrates that even in the event of

52

unforeseen challenges, it is possible to adapt around them and overcome them.
Through this process, I have learnt the importance of continually refining my
approach to any task or challenge I may face, and that any setbacks or
difficulties are, in essence, extremely valuable learning opportunities. I believe I
have improved on skills I already possessed, especially Python development, as
well as learnt many new skills in the fields of machine learning, signal and
audio processing, and cybersecurity. I have grown a deeper appreciation for the
synergy between theoretical concepts and practical applications, seeing what
started as a simple written plan turn into a working application.

53

10 Bibliography

Acharya, N. 2024. Understanding Precision, Recall, F1-score, and Support in
Machine Learning Evaluation | by Nirajan Acharya | Medium. Available at:
https://medium.com/@nirajan.acharya666/understanding-precision-recall-f1-
score-and-support-in-machine-learning-evaluation-7ec935e8512e [Accessed: 2
May 2024].
Allodi, L., Cremonini, M., Massacci, F. and Shim, W. 2018. The Effect of
Security Education and Expertise on Security Assessments: the Case of
Software Vulnerabilities. Available at: https://arxiv.org/abs/1808.06547v1
[Accessed: 4 May 2024].
Amazon. 2024. havit Wired Mechanical Gaming Keyboard and RGB Mouse
Combo Set UK Layout, Blue Switch Mechanical Anti-Ghosting Keyboard 105
Keys + 4800Dots Per Inch Programmable Wired Gaming Mouse, Black :
Amazon.co.uk: PC & Video Games. Available at:
https://www.amazon.co.uk/gp/product/B07XHJ4QK6/ [Accessed: 29 April
2024].
Asonov, D. and Agrawal, R. 2004. Keyboard acoustic emanations. IEEE
Symposium on Security and Privacy, 2004. Proceedings. 2004 2004, pp. 3–11.
Available at: https://doi.org/10.1109/SECPRI.2004.1301311 [Accessed: 26
April 2024].
Atkinson, K. 2023. GNU Aspell. Available at: http://aspell.net/ [Accessed: 5
May 2024].
Baek, S. and Kim, Y.G. 2019. Efficient Vulnerability Management Process in
the Military. 2019 International Conference on Platform Technology and
Service (PlatCon), pp. 1–5. Available at:
https://doi.org/10.1109/PLATCON.2019.8669420 [Accessed: 4 May 2024].
Bahmei, B., Birmingham, E. and Arzanpour, S. 2022. CNN-RNN and Data
Augmentation Using Deep Convolutional Generative Adversarial Network for
Environmental Sound Classification. IEEE Signal Processing Letters 29, pp.

54

682–686. Available at: https://doi.org/10.1109/lsp.2022.3150258 [Accessed: 27
April 2024].
Banerjee, S., Syed, Z., Bartlow, N. and Cukic, B. 2015. Keystroke Recognition.
Encyclopedia of Biometrics, pp. 1067–1073. doi: 10.1007/978-1-4899-7488-
4_205.
Cardaioli, M., Cecconello, S., Conti, M., Milani, S., Picek, S. and Saraci, E.
2021. Hand Me Your PIN! Inferring ATM PINs of Users Typing with a
Covered Hand. Proceedings of the 31st USENIX Security Symposium, Security
2022, pp. 1687–1704. Available at: https://arxiv.org/abs/2110.08113v3
[Accessed: 3 May 2024].
Cayir, A., Yenidogan, I. and Dag, H. 2018. Feature Extraction Based on Deep
Learning for Some Traditional Machine Learning Methods. 2018 3rd
International Conference on Computer Science and Engineering (UBMK), pp.
494–497. Available at: https://ieeexplore.ieee.org/document/8566383/
[Accessed: 9 May 2024].
Cheng, P., Ethem Bagci, I., Roedig, U. and Yan, J. 2020. SonarSnoop: active
acoustic side-channel attacks. International Journal of Information Security 19,
pp. 213–228. Available at: https://doi.org/10.1007/s10207-019-00449-8.
Ciric, D., Peric, Z., Nikolic, J. and Vucic, N. 2021. Audio Signal Mapping into
Spectrogram-Based Images for Deep Learning Applications. 2021 20th
International Symposium INFOTEH-JAHORINA (INFOTEH), pp. 1–6.
Available at: https://doi.org/10.1109/INFOTEH51037.2021.9400698 [Accessed:
27 April 2024].
da Costa-Luis, C. et al. 2024. tqdm: A fast, Extensible Progress Bar for Python
and CLI. Available at: https://zenodo.org/records/3551211 [Accessed: 1 May
2024].
Dai, Z., Liu, H., Le, Q. V. and Tan, M. 2021. CoAtNet: Marrying Convolution
and Attention for All Data Sizes. Advances in Neural Information Processing
Systems 5, pp. 3965–3977. Available at: https://arxiv.org/abs/2106.04803v2
[Accessed: 30 April 2024].

55

Deng, L. and Yu, D. 2014. Deep Learning: Methods and Applications.
Foundations and Trends® in Signal Processing 7(3–4), pp. 197–387. Available
at: http://dx.doi.org/10.1561/2000000039 [Accessed: 9 May 2024].
Dennis, J., Tran, H.D. and Li, H. 2011. Spectrogram image feature for sound
event classification in mismatched conditions. IEEE Signal Processing Letters
18(2), pp. 130–133. doi: 10.1109/LSP.2010.2100380.
FFmpeg developers. 2024. FFmpeg. Available at: https://ffmpeg.org/
[Accessed: 1 May 2024].
Gouthier, R. and Ponto, S. 1970. Designing Systems Programs. p. 274.
Available at: http://www.amazon.com/dp/0132019620 [Accessed: 25 April
2024].
Grassi, P.A., Garcia, M.E. and Fenton, J.L. 2017. Digital identity guidelines:
revision 3. Available at:
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-63-3.pdf
[Accessed: 25 April 2024].
Guo, Y., Sun, L., Zhang, Z. and He, H. 2019. Algorithm Research on Improving
Activation Function of Convolutional Neural Networks. Proceedings of the 31st
Chinese Control and Decision Conference, CCDC 2019, pp. 3582–3586. doi:
10.1109/CCDC.2019.8833156.
Harrison, J., Toreini, E. and Mehrnezhad, M. 2023. A Practical Deep Learning-
Based Acoustic Side Channel Attack on Keyboards. 2023 IEEE European
Symposium on Security and Privacy Workshops (EuroS&PW), pp. 270–280.
doi: 10.1109/EUROSPW59978.2023.00034.
Dell Inc. 2024. Inspiron 7415 2-in-1 Setup and Specifications | Dell US.
Available at: https://www.dell.com/support/manuals/en-us/inspiron-14-7415-
2-in-1-laptop/inspiron-7415-2-in-1-setup-and-
specifications/keyboard?guid=guid-f4d96b7c-8a4a-4f24-8b88-1f81d17905bb
[Accessed: 10 May 2024].
Ismailov, V.E. 2014. On the approximation by neural networks with bounded
number of neurons in hidden layers. Journal of Mathematical Analysis and
Applications 417(2), pp. 963–969. doi: 10.1016/J.JMAA.2014.03.092.

56

Kamiya, S., Kang, J.-K., Kim, J., Milidonis, A. and Stulz, R.M. 2019. Risk
Management, Firm Reputation, and the Impact of Successful Cyberattacks on
Target Firms. SSRN Electronic Journal. Available at:
https://papers.ssrn.com/abstract=3135514 [Accessed: 3 May 2024].
Kaneko, T., Tanaka, K., Kameoka, H. and Seki, S. 2022. iSTFTNet: Fast and
Lightweight Mel-Spectrogram Vocoder Incorporating Inverse Short-Time
Fourier Transform. ICASSP, IEEE International Conference on Acoustics,
Speech and Signal Processing - Proceedings 2022-May, pp. 6207–6211.
Available at: https://arxiv.org/abs/2203.02395v1 [Accessed: 27 April 2024].
Kriegeskorte, N. and Golan, T. 2019. Neural network models and deep learning.
Current Biology 29(7), pp. R231–R236. doi: 10.1016/J.CUB.2019.02.034.
Lillicrap, T.P., Santoro, A., Marris, L., Akerman, C.J. and Hinton, G. 2020.
Backpropagation and the brain. Nature Reviews Neuroscience 2020 21:6 21(6),
pp. 335–346. Available at: https://www.nature.com/articles/s41583-020-0277-3
[Accessed: 9 May 2024].
Loughlin, P.J. 2009. Time‐frequency and position‐wavenumber acoustic signal
analysis. The Journal of the Acoustical Society of America
126(4_Supplement), pp. 2206–2206. Available at:
/asa/jasa/article/126/4_Supplement/2206/654229/Time-frequency-and-
position-wavenumber-acoustic [Accessed: 27 April 2024].
McFee, B. et al. 2023. librosa/librosa: 0.10.1. Available at:
https://zenodo.org/records/8252662 [Accessed: 30 April 2024].
National Security Agency. 1982. NACSIM 5000 Tempest Fundamentals.
Available at: https://cryptome.org/jya/nacsim-5000/nacsim-5000.htm
[Accessed: 1 February 2024].
Park, D.S., Chan, W., Zhang, Y., Chiu, C.-C., Zoph, B., Cubuk, E.D. and Le,
Q. V. 2019. SpecAugment: A Simple Data Augmentation Method for
Automatic Speech Recognition. Proceedings of the Annual Conference of the
International Speech Communication Association, INTERSPEECH 2019-
September, pp. 2613–2617. Available at: http://arxiv.org/abs/1904.08779
[Accessed: 4 May 2024].

57

Parnas, D.L. 1972. On the criteria to be used in decomposing systems into
modules. Communications of the ACM 15(12), pp. 1053–1058. Available at:
https://dl.acm.org/doi/10.1145/361598.361623 [Accessed: 25 April 2024].
Pedersen, P. 1965. The Mel Scale. Journal of Music Theory 9(2), p. 295. doi:
10.2307/843164.
Pedregosa, F. et al. 2011. Scikit-learn: Machine Learning in Python. Journal of
Machine Learning Research 12, pp. 2825–2830. Available at: http://scikit-
learn.sourceforge.net. [Accessed: 2 May 2024].
Perez, A.F., Sanguineti, V., Morerio, P. and Murino, V. 2020. Audio-Visual
Model Distillation Using Acoustic Images. 2020 IEEE Winter Conference on
Applications of Computer Vision (WACV), pp. 2843–2852. Available at:
https://doi.org/10.1109/WACV45572.2020.9093307 [Accessed: 27 April 2024].
Piland, J.C., Czajka, A. and Sweet, C. 2023. Model Focus Improves
Performance of Deep Learning-Based Synthetic Face Detectors. IEEE Access
11, pp. 63430–63441. Available at:
https://doi.org/10.1109/ACCESS.2023.3282927 [Accessed: 10 May 2024].
PyTorch. [no date][a]. torch.optim.Optimizer.zero_grad — PyTorch 2.3
documentation. Available at:
https://pytorch.org/docs/stable/generated/torch.optim.Optimizer.zero_grad.ht
ml [Accessed: 1 May 2024].
PyTorch. [no date][b]. Zeroing out gradients in PyTorch — PyTorch Tutorials
2.3.0+cu121 documentation. Available at:
https://pytorch.org/tutorials/recipes/recipes/zeroing_out_gradients.html
[Accessed: 1 May 2024].
Riazi, M.S., Darvish Rouani, B. and Koushanfar, F. 2019. Deep Learning on
Private Data. IEEE Security and Privacy 17(6), pp. 54–63. doi:
10.1109/MSEC.2019.2935666.
Roth, J., Liu, X., Ross, A. and Metaxas, D. 2015. Investigating the
Discriminative Power of Keystroke Sound. IEEE Transactions on Information
Forensics and Security 10(2), pp. 333–345. Available at:
https://doi.org/10.1109/TIFS.2014.2374424 [Accessed: 26 April 2024].

58

Samsung. 2024. Voice Recorder. Available at:
https://galaxystore.samsung.com/prepost/000004401542 [Accessed: 29 April
2024].
Samsung UK. 2024. Specifications | Samsung Galaxy S10 | Samsung UK.
Available at: https://www.samsung.com/uk/smartphones/galaxy-s10/specs/
[Accessed: 29 April 2024].
Sharan, R. V. and Moir, T.J. 2019. Acoustic event recognition using
cochleagram image and convolutional neural networks. Applied Acoustics 148,
pp. 62–66. doi: 10.1016/J.APACOUST.2018.12.006.
Stevens, S.S., Volkmann, ; J and Newman, ; E B. 1937. A Scale for the
Measurement of the Psychological Magnitude Pitch ฀. J. Acoust. Soc. Am 8,
pp. 185–190. Available at: https://doi.org/10.1121/1.1915893 [Accessed: 27
April 2024].
The Mathworks Inc. 2024a. Design probabilistic neural network - MATLAB
newpnn - MathWorks United Kingdom. Available at:
https://uk.mathworks.com/help/deeplearning/ref/newpnn.html [Accessed: 5
May 2024].
The Mathworks Inc. 2024b. (Not recommended) Classify data using trained
deep learning neural network - MATLAB classify - MathWorks United
Kingdom. Available at:
https://uk.mathworks.com/help/deeplearning/ref/seriesnetwork.classify.html
[Accessed: 5 May 2024].
The pandas development team. 2024. pandas-dev/pandas: Pandas. Available
at: https://zenodo.org/records/10697587 [Accessed: 30 April 2024].
Thomas, T.G., Pandey, P.C. and Agashe, S.D. 1994. A PC-Based Multi-
resolution Spectrograph. Iete Journal of Research 40(2–3), pp. 105–108.
Available at: https://doi.org/10.1080/03772063.1994.11437177 [Accessed: 27
April 2024].
Ting, K.M. 2017. Confusion Matrix. Encyclopedia of Machine Learning and
Data Mining, pp. 260–260. Available at: https://doi.org/10.1007/978-1-4899-
7687-1_50 [Accessed: 2 May 2024].

59

Vieira, A. 2017. Business applications of deep learning. Ubiquitous Machine
Learning and Its Applications, pp. 39–67. doi: 10.4018/978-1-5225-2545-
5.CH003.
Wu, C.-H. 2021. coatnet-pytorch/coatnet.py at master · chinhsuanwu/coatnet-
pytorch. Available at: https://github.com/chinhsuanwu/coatnet-
pytorch/blob/master/coatnet.py [Accessed: 30 April 2024].
Zhuang, L., Zhou, F. and Tygar, J.D. 2009. Keyboard acoustic emanations
revisited. ACM Transactions on Information and System Security (TISSEC)
13(1). Available at: https://dl.acm.org/doi/10.1145/1609956.1609959 [Accessed:
1 February 2024].

60

11 Appendices

11.1 Appendix 1

PCRecordings\A.wav
Peaks not found.

PCRecordings\B.wav
np.diff(peaks): [184 190 191 182 193 186 191 190 181 176 195 176
184 180 193 180 180 191 178 196 185 193 185 190]
min(np.diff(peaks)): 176
Correctly identified peaks? (y/n): y

PCRecordings\C.wav
np.diff(peaks): [184 185 192 182 177 186 175 176 196 193 188 187
196 171 221 192 207 188 188 198 198 195 194 188]
min(np.diff(peaks)): 171
Correctly identified peaks? (y/n): y

PCRecordings\D.wav
Peaks not found.

PCRecordings\E.wav
np.diff(peaks): [26 163 188 212 206 213 193 186 195 193 190 187
194 194 413 207 194 191 187 213 210 200 200 186]
min(np.diff(peaks)): 26
Correctly identified peaks? (y/n): n

PCRecordings\F.wav
np.diff(peaks): [206 199 201 209 214 216 198 203 204 402 203 203
197 209 220 199 207 214 204 214 187 200 30 179]
min(np.diff(peaks)): 30
Correctly identified peaks? (y/n): n

61

PCRecordings\G.wav
np.diff(peaks): [189 189 193 207 197 206 217 205 208 198 199 185
192 198 184 194 206 203 202 209 205 197 183 196]
min(np.diff(peaks)): 183
Correctly identified peaks? (y/n): y

PCRecordings\H.wav
np.diff(peaks): [190 185 206 202 196 197 204 183 166 183 201 195
197 180 203 186 191 202 187 178 189 180 185 198]
min(np.diff(peaks)): 166
Correctly identified peaks? (y/n): y

PCRecordings\I.wav
np.diff(peaks): [165 171 180 186 180 193 188 178 187 168 169 175
186 215 171 180 174 169 167 186 186 185 190 183]
min(np.diff(peaks)): 165
Correctly identified peaks? (y/n): y

PCRecordings\J.wav
np.diff(peaks): [190 178 188 188 188 195 180 186 198 193 195 235
157 180 182 175 176 179 181 191 184 180 181 189]
min(np.diff(peaks)): 157
Correctly identified peaks? (y/n): y

PCRecordings\K.wav
np.diff(peaks): [186 175 179 186 182 180 171 172 179 173 173 161
159 164 165 174 175 167 179 179 171 163 181 187]
min(np.diff(peaks)): 159
Correctly identified peaks? (y/n): y

PCRecordings\L.wav
np.diff(peaks): [168 172 170 168 171 168 161 165 163 191 176 162
163 175 172 167 168 162 170 163 163 166 163 170]
min(np.diff(peaks)): 161

62

Correctly identified peaks? (y/n): y

PCRecordings\M.wav
np.diff(peaks): [153 164 168 141 155 149 162 166 162 146 157 184
170 172 156 166 169 164 155 190 159 160 163 177]
min(np.diff(peaks)): 141
Correctly identified peaks? (y/n): y

PCRecordings\N.wav
np.diff(peaks): [160 147 180 164 153 177 165 154 170 165 169 168
181 180 157 165 161 167 185 177 199 172 195 192]
min(np.diff(peaks)): 147
Correctly identified peaks? (y/n): y

PCRecordings\O.wav
np.diff(peaks): [160 159 159 165 156 165 156 154 157 165 157 163
163 157 155 160 162 152 161 161 151 159 153 158]
min(np.diff(peaks)): 151
Correctly identified peaks? (y/n): y

PCRecordings\P.wav
np.diff(peaks): [159 164 161 164 160 169 157 154 165 176 173 167
162 156 163 149 160 163 181 179 176 175 166 180]
min(np.diff(peaks)): 149
Correctly identified peaks? (y/n): y

PCRecordings\Q.wav
np.diff(peaks): [154 154 175 177 161 166 185 149 164 144 152 151
161 150 161 143 157 152 155 156 164 156 162 167]
min(np.diff(peaks)): 143
Correctly identified peaks? (y/n): y

PCRecordings\R.wav
np.diff(peaks): [140 143 32 128 174 168 171 177 160 167 160 174

63

155 161 166 172 175 169 171 173 144 170 336 180]
min(np.diff(peaks)): 32
Correctly identified peaks? (y/n): n

PCRecordings\S.wav
np.diff(peaks): [147 144 162 186 193 177 180 177 174 191 174 177
177 171 184 199 183 208 180 186 207 170 185 180]
min(np.diff(peaks)): 144
Correctly identified peaks? (y/n): y

PCRecordings\T.wav
np.diff(peaks): [147 171 162 148 168 146 153 151 139 139 182 175
169 175 162 163 160 165 156 165 187 173 168 163]
min(np.diff(peaks)): 139
Correctly identified peaks? (y/n): y

PCRecordings\U.wav
np.diff(peaks): [148 156 162 162 162 158 157 158 145 177 155 154
156 167 158 153 144 161 158 151 158 152 160 163]
min(np.diff(peaks)): 144
Correctly identified peaks? (y/n): y

PCRecordings\V.wav
np.diff(peaks): [156 152 155 151 145 146 142 148 133 152 147 135
125 139 148 136 137 139 141 154 152 161 155 131]
min(np.diff(peaks)): 125
Correctly identified peaks? (y/n): y

PCRecordings\W.wav
np.diff(peaks): [134 173 197 186 197 190 184 210 185 188 171 176
173 179 197 198 209 176 181 187 195 205 195 196]
min(np.diff(peaks)): 134
Correctly identified peaks? (y/n): y

64

PCRecordings\X.wav
np.diff(peaks): [154 168 162 162 191 174 194 179 219 211 190 190
212 201 172 203 194 170 191 183 174 182 170 184]
min(np.diff(peaks)): 154
Correctly identified peaks? (y/n): y

PCRecordings\Y.wav
np.diff(peaks): [148 154 159 150 164 163 170 159 169 165 167 195
168 186 205 182 182 174 206 194 176 190 176 208]
min(np.diff(peaks)): 148
Correctly identified peaks? (y/n): y

PCRecordings\Z.wav
np.diff(peaks): [171 160 175 172 172 176 183 172 183 185 185 181
187 183 189 180 224 172 188 192 200 194 184 188]
min(np.diff(peaks)): 160
Correctly identified peaks? (y/n): y

Minimum difference between peaks: 125

11.2 Appendix 2

 Precision Recall F1-Score Support

A 1 1 1 19
B 1 1 1 21
C 1 1 1 18
D 0.96 1 0.98 23
E 1 1 1 24
F 0.96 1 0.98 26
G 1 0.91 0.95 23
H 1 1 1 17
I 1 1 1 22
J 1 1 1 20

65

K 1 1 1 15
L 1 0.93 0.96 14
M 1 1 1 18
N 1 1 1 23
O 1 1 1 16
P 1 1 1 24
Q 1 1 1 6
R 1 1 1 10
S 1 1 1 22
T 0.94 1 0.97 17
U 1 1 1 20
V 0.96 1 0.98 27
W 1 1 1 28
X 1 0.97 0.98 30
Y 1 1 1 17
Z 1 1 1 20
Accuracy − − 0.99 520
Macro Average 0.99 0.99 0.99 520
Weighted Average 0.99 0.99 0.99 520

11.3 Appendix 3

 Precision Recall F1-Score Support

A 1 1 1 19
B 1 0.95 0.98 21
C 0.93 0.78 0.85 18
D 0.96 0.96 0.96 23
E 1 0.96 0.98 24
F 1 0.92 0.96 26

66

G 1 0.83 0.9 23
H 1 1 1 17
I 1 1 1 22
J 0.9 0.95 0.93 20
K 1 1 1 15
L 1 0.86 0.92 14
M 0.9 1 0.95 18
N 0.96 1 0.98 23
O 1 1 1 16
P 1 0.88 0.93 24
Q 1 1 1 6
R 0.91 1 0.95 10
S 0.92 1 0.96 22
T 0.94 1 0.97 17
U 0.87 1 0.93 20
V 1 0.93 0.96 27
W 0.9 1 0.95 28
X 0.83 0.97 0.89 30
Y 1 0.82 0.9 17
Z 0.86 0.95 0.9 20
Accuracy − − 0.95 520
Macro Average 0.96 0.95 0.95 520
Weighted Average 0.95 0.95 0.95 520

11.4 Appendix 4

 Precision Recall F1-Score Support

A 0.00 0.00 0.00 25
B 0.00 0.00 0.00 25
C 0.04 1.00 0.07 25

67

D 0.00 0.00 0.00 25
E 0.00 0.00 0.00 25
F 0.00 0.00 0.00 25
G 0.00 0.00 0.00 25
H 0.00 0.00 0.00 25
I 0.00 0.00 0.00 25
J 0.00 0.00 0.00 25
K 0.00 0.00 0.00 25
L 0.00 0.00 0.00 25
M 0.00 0.00 0.00 25
N 0.00 0.00 0.00 25
O 0.00 0.00 0.00 25
P 0.00 0.00 0.00 25
Q 0.00 0.00 0.00 25
R 0.00 0.00 0.00 25
S 0.00 0.00 0.00 25
T 0.00 0.00 0.00 25
U 0.00 0.00 0.00 25
V 0.00 0.00 0.00 25
W 0.00 0.00 0.00 25
X 0.00 0.00 0.00 25
Y 0.00 0.00 0.00 25
Z 0.00 0.00 0.00 25
Accuracy − − 0.04 650
Macro Average 0.00 0.04 0.00 650
Weighted Average 0.00 0.04 0.00 650

68

11.5 Appendix 5

Source code can be found at: https://github.com/moahmed0987/KRAMS

